

Normas de Biodegradação de Plásticos

Tabela comparativa baseada em informações técnicas extraídas de fontes confiáveis sobre as normas mencionadas. Essas normas focam principalmente na avaliação da biodegradação de materiais plásticos em condições ambientais específicas, como compostagem, digestão anaeróbica ou solo. Elas são usadas para certificar materiais biodegradáveis ou compostáveis.

A tabela é organizada por norma, com colunas destacando aspectos chave: Tipo/Ambiente, Método de Teste, Condições (ex.: Temperatura e Duração), Critérios de Passagem/Aprovação (percentual de biodegradação, desintegração e outros requisitos), e Observações Gerais. Em seguida, resumo as semelhanças e diferenças gerais.

Tabela Comparativa das Normas de Biodegradação de Plásticos

Características, métodos e critérios das principais normas internacionais.

Norma	Tipo / Ambiente	Método de Teste	Condições (Temperatura e Duração)	Critérios de Aprovação	Observações Gerais
ASTM D5511	Anaeróbico (alta solidez, simula digestores / aterros). Equivalente a ISO 15985.	Análise do biogás (CH₄ + CO₂)	35–37°C; 30–60 dias	≥60–70% de biodegradação; referência: celulose ≥70%	Indicado para avaliar a biodegradação em ambiente de resíduos sólidos; não se aplica a compostagem aeróbica.
ASTM D6954	Abiótico + biótico (oxidação ambiental, seguida de biodegradação em solo/água)	Exposição a UV/térmica e testes físico- químicos, biodegradação, ecotoxicidade (OECD 207 e 208)	~28°C; duração flexível (até 1 ano)	Peso molecular <10.000 Da; fração de gel <5%; alongamento ≤5% do original; metais pesados restritos	Degradação abiótica inicial, seguida de biodegradação aeróbica.
ISO 17556	Aeróbico em solo (ambiente terrestre natural)	Respirometria (O ₂ ou CO ₂)	20–28°C; 6–24 meses	≥60% de biodegradação em 180 dias; referência: celulose ou	Simula condições naturais de solo; devido à longa duração, não é

Direitos reservados para InBioPack / set/2025

InBi@Pack

				amido ≥60– 70%	aplicável à compostagem industrial.
ISO 15985	Anaeróbico (alta solidez, digestão intensiva)	Análise de biogás (CH ₄ + CO ₂)	52°C ±2°C; 15– 30 dias	≥60% de conversão de carbono em biogás; referência: celulose >70%	Simula digestores industriais; avalia a biodigestão de resíduos orgânicos de maneira eficiente.
EN 13432	Aeróbico em compostagem industrial (embalagens)	Desintegração (EN 14045/ISO 16929), Biodegradação (ISO 14855/EN 14046), ecotoxicidade (OECD 208)	58°C ±2°C; biodegradação em 6 meses, desintegração em 12 semanas	Biodegradação ≥90%; desintegração <10% retido (2 mm/12 semanas); germinação ≥90%; metais pesados restritos	Norma europeia completa para embalagens; exige rigor na segurança ambiental e rotulagem adequada.
ISO 14855	Aeróbico em compostagem controlada	Respirometria (evolução de CO ₂ , gravimétrico)	58°C ±2°C; até 6 meses	≥90% de biodegradação (referência: celulose); variabilidade <20%	Serve de base para EN 13432, simulando compostagem industrial com grande precisão.
ASTM D5338	Aeróbico em compostagem termofílica controlada. Equivalente a ISO 14855	Respirometria (CO ₂ acumulado)	58°C ±2°C; 45– 180 dias	≥60% em 45 dias; ≥90% em 180 dias (referência: celulose >90%)	Bastante similar à ISO 14855; funciona como parâmetro para ASTM D6400.
ASTM D6400	Aeróbico em compostagem municipal/industrial	Biodegradação (ASTM D5338/ISO 14855), desintegração (ISO 16929), ecotoxicidade	58°C ±2°C; 180 dias (biodegradação), 12 semanas (desintegração)	Biodegradação ≥90%; desintegração <10% (>2 mm/12 semanas); ausência de efeitos ecotóxicos; metais pesados controlados	Norma de referência para plásticos compostáveis nos EUA/Canadá, incluindo materiais lignocelulósicos.

Semelhanças Gerais

- Objetivo Comum: Todas as normas avaliam a biodegradação de plásticos, medindo a mineralização (conversão de carbono orgânico em CO₂, CH₄ ou consumo de O₂) para determinar se o material se decompõe de forma ambientalmente segura, evitando microplásticos ou resíduos tóxicos.
- Métodos Científicos: Predominam técnicas respirométricas (medição de gases) com réplicas (geralmente triplicatas), uso de materiais de referência (ex.: celulose para validar >60-90% de biodegradação) e controles em branco para consistência.
- Condições Controladas: Envolvem inoculantes microbianos (composto, solo ou lodo anaeróbico) e monitoramento de umidade/temperatura para simular ambientes reais, com ênfase em replicabilidade laboratorial.
- Aplicação em Certificação: São usadas para claims de "biodegradável" ou "compostável", com normas como EN 13432 e ASTM D6400 integrando múltiplos testes (biodegradação + desintegração + ecotoxicidade).
- **Requisitos de Referência**: Todas exigem que o material teste se biodegrade comparável ou melhor que referências, com variabilidade baixa (<20%).

Diferenças Gerais

- Ambiente e Condições: Normas anaeróbicas (ASTM D5511, ISO 15985) simulam aterros/digestores (35-52°C, biogás), enquanto aeróbicas focam em compostagem (58°C, CO₂) ou solo (20-28°C, O₂/CO₂). ASTM D6954 prioriza degradação abiótica inicial.
- Duração e Rigor: Testes de compostagem (ISO 14855, ASTM D5338, EN 13432, ASTM D6400) são mais curtos (45-180 dias) e rigorosos (≥90%), refletindo processos industriais acelerados; testes em solo (ISO 17556) são longos (até 24 meses) e menos exigentes (≥60%), simulando natureza.
- Critérios de Aprovação: Especificações como EN 13432 e ASTM D6400 incluem desintegração (<10% retido), ecotoxicidade e limites de metais pesados (ex.: UE mais restritivos que EUA), enquanto métodos puros (ex.: ASTM D5511, ISO 14855) focam apenas em % de biodegradação sem "pass/fail" fixo para certificação.
- **Escopo e Foco**: Normas de teste (ASTM D5338, ISO 14855) são métodos isolados; especificações (EN 13432, ASTM D6400) são holísticas para

produtos/embalagens, com rotulagem. ASTM D6954 difere por ser um guia, não um teste direto.

• **Limites Regionais**: EN 13432 (Europa) tem limites mais baixos para metais (ex.: Pb 50 ppm); ASTM D6400 (EUA) alinha com regulamentações locais, mas permite mais flexibilidade para materiais naturais.

Essa comparação é baseada em resumos de padrões técnicos e não substitui consulta aos documentos originais (disponíveis em sites como ASTM.org ou ISO.org, que podem exigir compra). Para aplicações específicas, recomenda-se testes laboratoriais certificados.

Direitos reservados para InBioPack / set/2025

In Bi Pack